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Abstract: The problem of simulating the spectral line shapes of aligned immobile samples arises in solid-
state NMR of various biological systems, including integral membrane proteins and peptides, receptor-bound
ligands, and macroscopically oriented DNA fibers. An important issue with regard to the extraction of structural
information is the correct treatment of the distribution of local symmetry axes relative to the average alignment
axis (mosaic spread). Previous formulations have not considered explicitly the three-dimensional uniaxial
character of the local axis disorder. Rather, the mosaic spread has been treated simply by convoluting the
theoretical line shape function with an effectively two-dimensional distribution of the local symmetry axes.
Here a closed-form line shape expression is derived for an axially symmetric distribution of bond orientations,
which includes the uniaxial distribution of the local symmetry axis about the average alignment axis. As an
illustration, the influences of the bond orientation and the degree of mosaic spread on deuterium (2H) NMR
line shapes are investigated. The closed-form solution in terms of elliptic integrals gives virtually identical
results to those of an alternative numerical Monte Carlo line shape simulation method. The derived line shape
function yields the correct powder-type limit, and has been tested by simulating a tilt series of2H NMR spectra
of purple membranes containing bacteriorhodopsin with a specifically deuterated 1Rmethyl group in the retinal
ring. The probability distribution for the bond orientations derived herein can be of potential interest for solid-
state NMR spectroscopy of aligned biomolecules involving dipolar, quadrupolar, and chemical shift interactions,
such as integral membrane proteins and peptides.

Introduction

Solid-state NMR spectroscopy provides a unique tool in
structural chemistry for investigating the properties of molecular
solids, liquid crystals, and various supramolecular biological
assemblies.1-9 Here, the structural parameters are contained in
the principal values of the coupling tensor due to quadrupolar,
dipolar, or chemical shift interactions, together with the orienta-

tion of the principal axes of the tensor relative to the external
magnetic field.10 Magic-angle spinning studies11,12can provide
the tensor principal values in terms of internuclear distance con-
straints,13 which are analogous to those in nuclear Overhauser
effect spectroscopy (NOESY) in solution NMR.14,15 Likewise,
solid-state NMR of oriented samples3,16 yields angular con-
straints, corresponding to the limit of weak alignment in solution
NMR, e.g., involving bicelles17 or filamentous phage.18 For non-
crystalline or amorphous systems, comparison of the solid-state
NMR line shapes with theory allows one to investigate the static
distributions of bond orientations, the pre-averaging due to fast
motions, and the degree of static disorder in aligned samples.

In certain cases one deals with the simulation of solid-state
NMR line shapes for uniaxially oriented samples that are es-
sentially immobile on the relevant NMR time scale. The problem
of a uniaxial immobile distribution arises in noncrystalline
samples of biological systems having cylindrical symmetry,
including aligned biopolymers such as RNA or DNA,8,19 integral
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membrane proteins,16,20,21filamentous phage, and possibly low-
temperature lipid phases. In such applications, one is typically
interested in obtaining bond angle distributions relative to the
static alignment tensor of the system. Clearly the accuracy of
the solid-state NMR spectral simulations is a crucial factor with
regard to the reliability of biophysical interpretations. Only if
there is an accurate correspondence of the simulated NMR spec-
tra to experiment can firm conclusions be drawn about the bond
angles or the degree of static disorder in the sample. Measure-
ments of the experimental NMR line shapes as a function of
the sample inclination (tilt) and temperature provide important
tests for models which describe the solid-state NMR spectra
for a given system,16 as different formulations may fit the experi-
mental line shape at a single tilt angle or temperature equally
well.

Here we present a general formulation for the solid-state
NMR line shapes of uniaxially oriented immobile samples for
the spinI ) 1 case. A closed-form line shape expression is
derived, and the effect of the bond orientation and static disorder
on deuterium (2H) NMR line shapes is investigated theoretically
at different macroscopic sample inclinations. As a representative
example, an integral membrane protein which plays an important
role in photosynthetic energy conversion, bacteriorhodopsin, is
considered.16 The new line shape simulation method can be
applied to solid-state NMR spectra involving quadrupolar,
dipolar, and chemical shift interactions as a means of studying
biomolecular structure in relation to activity, e.g., for integral
membrane protein receptors having bound ligands.22

Solid-State NMR Line Shapes of Uniaxially Aligned
Immobile Samples

In what follows, we consider the specific case of the
quadrupolar coupling in deuterium (2H) NMR spectroscopy, as
in the pioneering work of Vold and co-workers.1,8,23-25 How-
ever, the analysis is generally applicable to quadrupolar, dipolar,
and chemical shift interactions as a result of the isomorphism
of the Hamiltonians for rank-2 interactions.10 To calculate the
line shape function due only to static distributions, and possible
pre-averaging of the coupling tensor from fast motions (on the
2H NMR time scale), one needs to calculate the marginal
probability distribution of the NMR transition frequencies.5 The
latter depends on all of the possible orientations of the C-2H
bonds in the sample. For spinI ) 1 quadrupolar nuclei, a closed-
form line shape expression can be derived by considering the
single-quantum transitions|+1〉 f |0〉 and |0〉 f |-1〉, corre-
sponding to the2H NMR transition frequenciesνQ

+ and νQ
-,

respectively, as given by6

In the above expression, the subscriptX ≡ P, I designates the
frame associated with the principal axis system (PAS,P) of

the static electric field gradient (EFG) tensor, or alternatively
the intermediate (I) frame of theresidualEFG tensor (i.e., left-
over from motions fast on the2H NMR scale); andL denotes
the laboratory frame defined by the external main magnetic field
B0. An example of the case of a static EFG tensor would be an
immobile C2H2 group, whereas a rapidly rotating C2H3 group
would yield a residual coupling tensor. A more detailed dis-
cussion of tensor averaging can be found in the book chapter
of Brown.5 In eq 1,ø ≡ øQ or øQ

eff is the static or residual (ef-
fective) quadrupolar coupling constant, andη ≡ ηQ or ηQ

eff is
the asymmetry parameter of the EFG tensor. The symbols
Dn0

(2)(ΩXL), wheren ) 0, (2, denote the Wigner rotation matrix
elements for the overall transformation of the irreducible com-
ponents of the EFG tensor from its static or residual principal
axis system, associated with a particular2H-labeled site, to the
laboratory frame as given by the Euler anglesΩXL ) (φ̃, θ̃, 0).
Here we use the convention of Rose26 for right-handed body-
fixed rotations, and for the Wigner rotation matrixes.

The generalized coupling parametersø andη are related to
the principal values of the EFG tensor and can be determined
from the powder-type2H NMR spectrum, for which the bond
directions are isotropically distributed.10 Comparison of the
residual coupling parametersøQ

eff and ηQ
eff to the appropriate

static valuesøQ andηQ yields information about the influences
of pre-averaging due to fast motions.5,8 For instance, in case of
a methyl group, fast rotations lead to a reduction of the static
coupling constant by a factor of 3, viz.øQ

eff ) øQ
1/2 (3 cos2

109.47° - 1) ) - 1/3 øQ ) -56.7 kHz, where the effective
asymmetry parameterηQ

eff is reduced to zero by the axially
symmetric motions.

Deuterium (2H) NMR Spectroscopy of Aligned Systems.
One approach for simulating solid-state NMR spectra is to derive
a closed-form line shape function, which is limited to fairly
simple distributions, such as spherical powder-type aver-
aging.5,9,27-33 A closed-form expression for the2H NMR line
shapes in the case of a simple distribution of C-2H or C-C2H3

bond orientations on a cone has also been derived, i.e., for coni-
cal (or cylindrical) averaging, without explicit treatment of the
three-dimensional disorder of the symmetry axes.5,20,34A second
approach involves numerical simulation of the solid-state NMR
spectral line shapes,2,35-39 e.g., by solving the stochastic
Liouville-von Neumann equation including multiple-site
jumps.2,39-41 Such numerical methods are useful when the time
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scale of the motions falls within the relevant NMR time scale,
and the distribution function for the symmetry axes and the
geometry of the system of interest still remain fairly simple.

Now in 2H NMR spectroscopy the structural information is
contained in the principal values of the electric field gradient
coupling tensor, together with the orientation of its principal
axes relative to the external magnetic field, as described in the
classic book of Ha¨berlen.10 Without taking into account any
specific internal molecular geometry, the overall transformation
of the PAS of the static or residual EFG tensor to the laboratory
frame is given in terms of the Euler anglesΩXL ) (φ̃, θ̃, 0).
The latter can be expanded into three intermediate transforma-
tions, as illustrated in Figure 1 for the specific example of a
seven-helix transmembrane protein having a specifically2H-
labeled methyl group. Here the transformations include the
orientation of the C-2H or C-C2H3 bond with respect to the
local symmetry axis (membrane normal), the static distribution
of the local symmetry axes with respect to the average
membrane normal (mosaic spread), and the orientation of the
sample as a whole with respect to the external magnetic field
(tilt angle). By using the well-known closure property of the
rotation group,5 one can write that

Let us consider the general case of a uniaxially symmetric
sample having an axially symmetric coupling tensor (η ) 0).
Here we start with the orientation of the principal axis system
(PAS) with itsz-axis along a particular C-2H or C-C2H3 bond.
The first set of Euler anglesΩXN ≡ (0, θB, φ) pertains to the
orientation of the PAS of the static or residual EFG tensor

associated with the average orientation of the C-2H or C-C2H3

bond with respect to the local symmetry axis (N, membrane
normal), as given by the fixed angleθB, together with the
uniaxial distribution of the bond orientations relative to the local
symmetry axisφ. Clearly one objective of the NMR experiments
is to determineθB accurately even in the presence of consider-
able mosaic spread.16 The second transformationΩND ≡ (0, θ′,
φ′) corresponds to the local symmetry axis disorder, character-
ized byθ′, as well as the three-dimensional uniaxial distribution
of the local symmetry axes (N) with respect to theaVerage
symmetry axis (D, director) as given by the azimuthal angle
φ′. Finally, the third transformationΩDL ≡ (0, θ, 0) describes
the fixed sample inclination (tilt)θ relative to the external
magnetic field (B0); cf. Figure 1. (Note that the first and second
transformations include the azimuth from the subsequent rotation
to simplify the notation, which is consistent with the standard
convention for Euler angles.26)

However, to derive the line shape function in closed form, it
is convenient to break up the transformation of eq 2 into two
independent subtransformations, that is to say:

Referring to Figure 1, the additional anglesΩNL (φ′′, θ′′, 0)
describe the overall orientation of the local symmetry axisN
with respect to the laboratory frame (main magnetic field), which
can be expressed via the Euler anglesθ′ andφ′. To simplify
the analytical calculation, rank-1 rotation matrixes can be used
instead of rank-2, which yields

(In using rank-1 rotation matrixes it must be remembered that
the parity is odd, whereas the coupling interaction has even
parity and is invariant to inversion42.) Hereφ′′ is a phase factor
(not shown) that is a function of (θ′, φ′). It links the combined
closure expressions using two transformations, given above, with
the full closure expansion of eq 2 using three transformations.
The additional phase can be disregarded when the azimuthal
average is considered,16 or when differentiating holding (θ′, φ′)
constant (vide infra). The anglesφ and φ′ are uniformly
distributed from 0 to 2π, whereas the probability distribution
of the angleθ′ can be approximated in many cases simply by
a normal Gaussian distribution. At a given displacement from
the average directorθ′, the marginal probability distribution of
the bond anglesθ̃ can then be obtained by integrating the joint
probability for the multivariate distribution over (θ′,φ′) or
equivalentlyθ′′, which is the corresponding polar angle (co-
latitude).

Probability Distribution for Overall Bond Orientation.
Clearly one is generally interested in the distribution of the
overall bond angleθ̃ with respect to the laboratory frame, as
defined by the magnetic fieldB0. The task at hand is then, first,
to evaluate the mapping of the joint probability distribution for
the angular variables (θ′, φ′) into the probability distribution
for the overall bond angleθ̃. Second, the mapping of the overall

(42) Trouard, T. P.; Alam, T. M.; Brown, M. F.J. Chem. Phys.1994,
101, 5229-5261.

Figure 1. Example of transformation of the coupling tensor for an
aligned uniaxial immobile sample. A seven-helix transmembrane protein
having a 2H-labeled methyl group is depicted, as in the case of
bacteriorhodopsin, ref 16. The overall rotation from the principal axis
system (PAS) to the laboratory frame (defined by the magnetic field
B0) is given by the Euler anglesΩXL ≡ (φ̃, θ̃, 0), where an axially
symmetric coupling tensor (η ) 0) is assumed. Using the geometry of
the system, the transformation is decomposed into three intermediate
rotations. The first set of Euler anglesΩXN ≡ (0, θB, φ) describes the
orientationθB of the principal axis system (PAS) of the EFG tensor,
i.e., static (X ) P) or residual (X ) I), with respect to the local symmetry
axis N, about which there is a static uniaxial distribution of the bond
orientationsφ. The second transformationΩND ≡ (0, θ′, φ′) corresponds
to the deviationθ′ of the local alignment axisN with respect to the
average normal to the membrane planeD (mosaic spread), together
with the corresponding azimuthal rotationφ′. Finally, the third
transformationΩDL ≡ (0, θ, 0) describes the inclinationθ (tilt) of the
average membrane normalD relative to the main external magnetic
field B0, for which the azimuth is immaterial. Note that the overall
transformation from the local membrane frame to the laboratory is
described by the anglesΩNL ≡ (φ′′, θ′′, 0), cf. the text.

D00
(2)(ΩXL) ) ∑

m)-2

2

D0m
(2)(ΩXN)Dm0

(2)(ΩNL) (3)

D00
(2)(ΩNL) ) ∑

m)-2

2

D0m
(2)(ΩND)Dm0

(2)(ΩDL) (4)

cosθ̃ ) cosθB cosθ′′ - sin θB sin θ′′ cos(φ + φ′′) (5)

cosθ′′ ) cosθ′ cosθ - sin θ′ sin θ cosφ′ (6)

Dn0
(2)(ΩXL) ) ∑

m′)-2

2

∑
m)-2

2

Dnm′
(2) (ΩXN)Dm′m

(2) (ΩND)Dm0
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bond angle distributionp(θ̃) into the distributions for the reduced
frequenciesê( of the twoI ) 1 spectral branches is considered,
where the latter constitute the experimental NMR line shape.5

In the limit of a random or spherical (powder-type) distribution,
p(θ̃) f 1/2 sin θ̃ and the well-known Pake doublet is ob-
tained.27,29 But for a semi-random distribution, e.g., a uniaxial
or conical-type distribution,p(θ̃) is governed by the specific
geometry appropriate to the problem considered.5

In terms of the model depicted in Figure 1, the static distri-
bution of θ̃ is specifically generated by the azimuthal rotation
φ about the local symmetry axis, e.g., the local membrane
normal. That is to say,θ̃ is implicitly a function ofφ and vice
versa, cf. eq 5. Thus we can write specifically that

Introducing the reduced frequenciesê( of the twoI ) 1 spectral
branches, the derivative dφ/dê( can be evaluated to yield the
NMR line shape, e.g., in the absence of mosaic spread.5

However, in the presence of mosaic spread (alignment
disorder), the overall bond angleθ̃ or alternativelyφ depends
on the two angular variables (θ′, φ′), in addition to the fixed
parameters (θ, θB). Here one needs to consider the marginal
probability distribution for the random variableθ̃ obtained by
integrating over the variables (θ′, φ′). In general, the marginal
probability distribution forθ̃ is obtained by integrating the joint
probability densityp(θ̃, θ′, φ′) with respect to the subset of
variables (θ′,φ′), yielding:

Now according to Bayes’ rule,43

wherep(θ̃|θ′, φ′) is the conditional probability distribution for
θ̃ given (θ′,φ′), and the random variables (θ′,φ′) are assumed
statistically independent with probability densitiesp(θ′) and
p(φ′). Comparison with eq 7 then allows one to identify the
conditional probability distribution for the overall bond orienta-
tion θ̃ as:

Finally, one obtains from eqs 8-10 that

whereφ andφ′ are given in terms of eqs 5 and 6, respectively.
One can then express the above integral, eq 11, in terms of

the new angular variableθ′′ which describes the mosaic spread
at constantθ′, cf. Figure 1. Making the substitution ofθ′′ for
φ′ leads to

After calculating the derivatives in eq 12, the probability

distributionp(θ̃) for rank-2 interactions becomes

Note that in the above expressionθ̃ and θB are treated as
constant parameters, so that the integral involves the single
integration variableθ′′ within the above indicated limits. It is
well-known that a unique solution for such an integral equation
is not obtained.44 Physical solutions for eq 13 are obtained only
for the case that the square roots are both real. In what follows,
we define

Physical considerations (cf. Figure 1) indicate that for angles
θ̃, θΒ, θ, andθ′ ∈ [0, π] the inequalities cos (θ̃ - θΒ) g cos(θ̃
+ θΒ) and cos(θ - θ′) g cos(θ + θ′) are applicable.
Consideration of the various permutations of the cosine terms
in the two radicands (not shown) then yields two real physical
solutions: (i) for R > γ > δ > â or γ > R > â > δ, and (ii )
for γ > R > δ > â or R > γ > â > δ.

NMR Spectral Frequencies and Line Shape Function.
Following ref 5 one next needs to consider mapping of the
probability distribution for the overall bond angleθ̃ into the
frequency space of the NMR spectrum. For an axially symmetric
coupling tensor, the NMR spectrum is given in terms of the
reduced frequenciesê( of the twoI ) 1 spectral branches by5

corresponding to|cos θ̃| ) x(1(2ê()/3. Conservation of
probability in the angular or frequency spaces then yields:

However, due to the even-rank coupling, only the absolute value
can be determined, so that

We are now in a position to calculate the line shape function
p(ê() in mathematical closed form. The distribution of the
colatitudep(θ′) is assumed to be Gaussian

(43) van Kampen, N. G.Stochastic Processes in Physics and Chemistry;
North-Holland: Amsterdam, 1981.

(44) Gradshteyn, I. S.; Ryzhik, I. M.Table of Integrals, Series, and
Products, 5th ed.; Academic Press: San Diego, 1994.

p(θ̃)dθ̃ ) 1

4π2 ∫0

π ∫cos(θ+θ′)
cos(θ-θ′) ×

dcosθ′′

x[cos(θ̃ - θB) - cosθ′′] [cos θ′′ - cos(θ̃ + θB)]
×

p(θ′) sin θ′ dθ′ sin θ̃ dθ̃

x[cos(θ - θ′) - cosθ′′] [cos θ′′ - cos(θ + θ′)]
(13)

R ≡ cos(θ̃ - θΒ) (14a)

â ≡ cos(θ̃ + θΒ) (14b)

γ ≡ cos(θ - θ′) (14c)

δ ≡ cos(θ + θ′) (14d)

ê( ) ( 1/2 (3 cos2 θ̃ - 1) (15)

p(ê() dê( ) p(θ̃) dθ̃ (16)

p(ê() f |p(ê()| ) | dθ̃
dê(

| |p(θ̃)| (17a)

)
|p(θ̃)|

x3(1 ( 2ê() |sin θ̃|
(17b)

p(θ′) ) 1

σx2π
exp(-θ′ 2

2σ2 ) (18)

p(θ̃) dθ̃ ) p[φ(θ̃)] dφ(θ̃) ≡ p(φ) dφ ) dφ

2π
(7)

p(θ̃) dθ̃ ) ∫θ′)0

π ∫
φ′)0

2π
p(θ̃, θ′, φ′) sin θ′ dθ′ dφ′ (8)

p(θ̃, θ′, φ′) ) p(θ̃|θ′, φ′) p(θ′) p(φ′) (9)

p(θ̃|θ′, φ′) dθ̃ )
(∂φ)θ′,φ′

2π
(10)

p(θ̃) dθ̃ ) ∫0

π ∫0

2π (∂φ)θ′,φ′

2π
(∂φ′)θ′

2π
p(θ′) sin θ′ dθ′ (11)

p(θ̃)dθ̃ ) 1

4π2 ∫0

π ∫θ-θ′

θ+θ′ (∂ cosφ

∂θ̃ )
θ′,θ′′

(∂ cosφ′
∂θ′′ )

θ′
×

dθ̃
sinφ

dθ′′
sinφ′ p(θ′) sin θ′ dθ′ (12)
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whereσ is the standard deviation about the mean of〈θ′〉 ) 0.
Integration of eq 13 with respect to cosθ′′ then yields two
physical solutions which involve complete elliptic integrals of
the first kind.44 (A similar approach is used in the case of an
asymmetric coupling tensor.5) The following general expression
is obtained for the NMR line shape:

where

Here the kernelK (k) ) F(π/2,k) represents a complete elliptic
integral of the first kind in the normal trigonometric form44

The reader should note that the( solutions correspond to
the reduced frequenciesê( so that cosθ̃ ) +x(1(2ê()/3,
-x(1(2ê()/3.

Clearly the above general result, eqs 19a-d, for an immobile
uniaxial distribution in the presence of three-dimensional
alignment disorder should reduce directly in various limiting
cases to previous formulations.5,20 For instance, in the absence
of mosaic spread (θ′ ) φ′ ) 0), the probability densityp(θ′)
becomesδ(θ′ - 0) ) δ(cosθ′ - 1), i.e., a Dirac delta function
is obtained. Solution (i) then gives

and analogously for solution (ii ). In this limit only solution (i)
yields a physical result; whereas the contribution from solution
(ii ) becomes zero. Thus, eqs 19a-d reduce immediately to the
previously published result for a conical semi-random distribu-
tion in the absence of mosaic spread5,20

Here cos (θ̃ - θB) > cosθ > cos (θ̃ + θB), which is satisfied
for all angles. The above expression, eq 22, is equivalent to the
case when only eq 5 is considered,20 for which the theoretical
line shape function must be convoluted with a Gaussian
distribution, replacingθ f θ ( θ′ to introduce the mosaic
spread. However, this approach corresponds to an effectively

two-dimensional treatment of the alignment disorder, since eq
5 by itself contains no information about theuniaxial character
of the distribution of the local symmetry axes, as manifested
by boththe anglesθ′ andφ′. (In geographical terms one includes
only latitude whereas longitude is neglected.) Consequently, one
needs to properly treat the uniaxial distributions about both the
local membrane normal and the average membrane normal, as
described by eqs 5 and 6. Finally, in the limit that the integrands
in eqs 19a-d are independent ofθ̃ the classical Pake for-
mula5,27,29 is obtained

Alternative Monte Carlo Line Shape Simulation Method
Here we also consider an alternative numerical method for

the NMR line shape simulation, which can prove useful in the
case of complicated internal molecular geometries and distribu-
tion functions for the alignment disorder.16,19 Even if an
analytical closed-form expression can be derived for the
probability distribution,p(θ̃), it still has to be integrated over
the distribution of possible orientations of the local symmetry
axes with respect to the average director, cf. eqs 19a-d. The
complete elliptic integrals arising in this procedure can be
calculated only numerically in most cases and converge slowly
due to the presence of singularities, which affect the precision
and require substantial computational time. Moreover, to obtain
the final inhomogeneous line shape, eqs 19a-d have to be
convoluted with the intrinsic line shape, e.g., due to homoge-
neous linebroadening. However, these computational difficulties
are bypassed if the line shape is accumulated numerically from
the very beginning, namely, by randomly generating the
corresponding variables such asφ, φ′, andθ′ according to their
distribution functions, and using eqs 1 and 2 together with eqs
5 and 6. The anglesφ andφ′ are uniformly distributed from 0
to 2π, whereasθ′ is assumed to be normally distributed with a
Gaussian standard deviationσ. In the case of three-dimensional
symmetry axis disorder, random values ofθ′ are generated by
inverting the associated cumulative distribution functionP(θ′),

whereN is a normalization constant, and the values ofP(θ′)
are uniformly distributed from 0 to 1. For a given triple of the
anglesφ, φ′, andθ′ the quadrupolar splitting is calculated by
using eqs 1 and 2, and a unit intensity value is assigned to this
splitting. This procedure, referred to as the Monte Carlo line
shape simulation method, is repeated about 50 000 times which
proves sufficient to accumulate a smooth spectrum from-100
to 100 kHz. Finally, the convolution with the intrinsic line shape
can be numerically calculated.

Simulation of Deuterium NMR Spectra of Uniaxial
Immobile Samples

Clearly any model which aims at describing the2H NMR
spectra of aligned samples should reproduce a classical Pake
powder pattern27-29 as a limiting case if the anglesθ′ are
uniformly distributed over a unit sphere, regardless of the
macroscopic tilt angle of the sample. Part a of Figure 2 shows
simulations of powder-type2H NMR spectra obtained by using

|p(ê()| ∝ 1

|cosθ̃|
(23a)

∝ 1

x1 ( 2ê(

(23b)

P(θ′) ) N∫0

θ′
exp(-q 2

2σ2 ) sinq dq (24)

(i) if R > γ > δ > â or γ > R > â > δ

|p(ê()| ∝ 1

|cosθ̃| ∫0

π 1
y

K (xy) exp(-θ′ 2

2 σ2 ) sin θ′ dθ′ (19a)

(ii ) if γ > R > δ > â or R > γ > â > δ

|p(ê()| ∝ 1

|cosθ̃| ∫0

π 1
x

K (yx) exp(-θ′ 2

2 σ2 ) sin θ′ dθ′ (19b)

x ≡ x(γ - δ) (R - â) (19c)

y ≡ x(R - δ) (γ - â) (19d)

K (k) ) ∫0

π/2 dx

x1 - k2 sin2 x
(20)

|p(ê()| ∝ 1

|cosθ̃| ∫0

π 1
y

K (xy) δ(cosθ′ - 1) dcosθ′ (21a)

∝ 1

|cosθ̃|
1
y

K (xy)|cosθ′ ) 1 (21b)

|p(ê()| ∝
1

|cosθ̃ |x[cos (θ + θB) - cosθ̃] [cos θ̃ - cos (θ - θB)]
(22)
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a simplified treatment for the mosaic spread, eq 22, whereθ f
θ ( θ′, which corresponds to effectively a two-dimensional
distribution of the symmetry axes. As can be seen from Figure
2, while the powder-type Pake pattern can be reproduced as a
limiting case for theθ ) 0° tilt angle, it cannot be simulated
for the θ ) 90° tilt. By contrast, use of eqs 19a-d, which
correspond to a full three-dimensional treatment of the mosaic
spread, eliminates this undesirable feature. Consequently a
powder pattern is recovered at both tilt angles, part b, as well
as at other sample inclinationsθ (not shown).The aboVe
emphasizes the importance of a correct treatment for the
distribution of the symmetry axes in uniaxially aligned samples.

Next, Figure 3 shows simulation of a tilt series of2H NMR
spectra for a uniaxially oriented immobilized sample at various
values of the bond orientationθB with respect to the local
symmetry axis, as indicated in parts a-f. The closed-form line
shape expression given by eqs 19a-d has been used. As can
be seen, changing the value for the bond angle yields dramatic
alterations of the2H NMR spectral line shapes, such as the
appearance and disappearance of peaks and shoulders in the
spectra, especially for tilt anglesθ of 15, 30, and 45°. Note
that the largest changes are predicted within the range of bond
anglesθB from 30 to 50°. By contrast, Figure 4 shows that the
effect of the local axis disorderσ (mosaic spread) primarily
changes the spectral line widths for different values ofσ, cf.
parts a-f. At a greater degree of the mosaic spread, the2H NMR
spectra become similar to the powder-type Pake pattern at larger
sample inclinations, cf. parts e and f of Figure 4.

A comparison of the results for a tilt series of2H NMR spectra
calculated by using the closed-form line shape expression, eqs

19a-d, with those obtained by using the Monte Carlo method
is presented in Figure 5. The two methods yield virtually
identical results, although the calculation time in the former case
is about 60 times longer than for the Monte Carlo simulation
(1 h versus less than one minute for the whole tilt series
calculated on a desktop computer operating at 266 MHz). It
follows that the Monte Carlo approach appears to be more
effective from a computational point of view, especially for the
case of a nonaxially symmetric EFG tensor and complicated
internal geometries as in the case of DNA.19 However, in terms
of structural biophysics it is clearly desirable to employ both
approaches as a means of investigating the uniqueness of the
bond angle solutions.

Application to Integral Membrane Proteins
As a representative biological application, the closed-form

line shape expression, eqs 19a-d, has been used to simulate
experimental2H NMR spectra of an integral membrane protein,
bacteriorhodopsin (bR), aligned on planar glass substrates.16

Bacteriorhodopsin is a light-driven proton pump45-47 and occurs
naturally in the purple membranes ofHalobacterium salinarium.

Figure 2. Simulation of2H NMR powder-type limit for a uniaxially
oriented immobile sample at macroscopic inclination angles ofθ ) 0°
and 90° using values for the effective coupling parameters oføQ

eff )
56.7 kHz andηQ

eff ) 0, and a mosaic spread ofσ ) 7°. Convolution
with an intrinsic Lorentzian line shape having a width of 0.5 kHz has
been applied as a final step. (a) Simulation using the simplified two-
dimensional distribution of symmetry axes, eq 22, obtained by replacing
θ f θ ( θ′ and averaging overθ′. (b) Simulation using a three-
dimensional distribution of the symmetry axes, eqs 19a-d, cf. the text.
Note that the formulation based on the two-dimensional distribution,
part a, fails to reproduce the powder spectrum limit at 90° sample tilt.
On the other hand, part b shows that the classical Pake powder pattern
can be recovered as a limiting case at both tilt angles by explicitly
including both the uniaxial distributions about theN andD axes, viz.
involving φ andφ′, corresponding to a three-dimensional treatment of
the mosaic spread.

Figure 3. Simulation of tilt series of2H NMR spectra for a uniaxial
immobile sample showing the effect of the bond orientationθB with
respect to the local symmetry axis at sample inclinations ofθ ) 0°,
15°, 30°, 45°, 60°, 75°, and 90°. All spectra are scaled by the integral:
(a) θB ) 3°, (b) θB ) 30°, (c) θB ) 40°, (d) θB ) 50°, (e) θB ) 70°,
and (f) θB ) 90°. The closed-form expression, eqs 19a-d, has been
used together with values of the coupling constant oføQ

eff ) 56.7 kHz
and a mosaic spread ofσ ) 7°. Convolution with an intrinsic Lorentzian
line shape having a width of 3.2 kHz has been applied as a final step.
Varying the bond orientationθB yields dramatic alterations of the
spectral line shapes, especially for tilt anglesθ of 15°, 30°, and 45°
within the range of bond anglesθB from 30 to 50°.
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It is the prototype of seven-helix transmembrane proteins and
bears a similarity to other members of this class, such as
rhodopsin which is found in the rod cells in animal and human
eyes and plays an important role in the process of vision.48,49

Bacteriorhodopsin thus represents a model system which can
be investigated in relation to other integral membrane proteins
and ligand-binding receptors.22,50 It is known that the chromo-
phore isomerizes about one of its double bonds after absorption
of light, and in this way changes its interactions with the protein
binding pocket. Hence, the structural information from2H NMR
spectroscopy may be of great value in understanding the
mechanisms of action of these retinal proteins.

Simulation of the experimental2H NMR tilt series spectra
for macroscopically oriented purple membranes, containing

bacteriorhodopsin with a specifically2H-labeled methyl group
at the 1R position of the retinal ring,16 is depicted in Figure 6.
Fast motions about the methyl rotor axis yield a decrease of
the static coupling constant5 by approximately a factor of 3, as
found from simulating the powder-type2H NMR spectrum16 to
obtain the principal values of the coupling tensor oføQ

eff ) 52.4
kHz andηQ

eff ) 0. Part a shows representative experimental2H
NMR spectra of bR-containing purple membranes aligned on
planar substrates.16 As can be seen from part b of Figure 6, a
three-dimensional treatment of the mosaic spread, given by eqs
19a-d, yields an excellent agreement of the simulated and
experimental spectra if the bond angleθB is set to 68.8°. It is
noteworthy that at 0° sample inclination, for a given value of
the bond angleθB there is an additional solution (θB ) 42°, not
shown in Figure 6) which yields a similar spectral pattern, but
with a reversed sign of the quadrupolar splitting.16 Therefore,
to unequivocally determine the value of the bond orientation
θB, additional spectral measurements at other sample inclinations
are needed.

The necessity to consider properly the three-dimensional
uniaxial character of the mosaic spread is further illustrated in
part c of Figure 6. Here the simplified two-dimensional treatment
of the mosaic spread20 has been used, eq 22. The subspectra
calculated for various values ofθ f θ ( θ′ distributed around
the average macroscopic tilt angleθ have been added with a
weighting factor of exp[-(θ - θ′)2/2σ2 ]. In this case a slightly
different value for the bond orientation ofθB ) 69.5° is needed
to correspond to the experimentally observed splitting at 0° tilt,
in comparison with the three-dimensional treatment havingθB

) 68.8°. As can be seen, the peaks corresponding to the2H

(45) Otto, H.; Marti, T.; Holz, M.; Mogi, T.; Lindau, M.; Khorana, H.
G.; Heyn, M. P.Proc. Natl. Acad. Sci. U.S.A.1989, 86, 9228-9232.

(46) Mathies, R. A.; Lin, S. W.; Ames, J. B.; Pollard, W. T.Annu. ReV.
Biophys. Biophys. Chem.1991, 20, 491-518.

(47) Alexiev, U.; Marti, T.; Heyn, M. P.; Khorana, H. G.; Scherrer, P.
Biochemistry1994, 33, 13693-13699.

(48) Brown, M. F.Chem. Phys. Lipids1994, 73, 159-180.
(49) Brown, M. F.Curr. Top. Membr.1997, 44, 285-356.
(50) Hruby, V. J.; Pettitt, B. M. InComputer-Aided Drug Design.

Methods and Applications; Perun, T. J., Propst, C. L., Eds.; Marcel Dekker:
Basel, 1989; pp 405-460.

Figure 4. Simulation of tilt series of2H NMR spectra for a uniaxial
immobile sample showing influence of the mosaic spreadσ at sample
inclinations ofθ ) 0°, 15°, 30°, 45°, 60°, 75°, and 90°. All spectra are
scaled by area: (a)σ ) 1°, (b) σ ) 3°, (c) σ ) 7°, (d) σ ) 10°, (e) σ
) 15°, and (f)σ ) 20°. The closed-form expression, eqs 19a-d, has
been used together with values of the effective coupling constant of
øQ

eff ) 56.7 kHz and the bond orientation ofθB ) 70°. A Lorentzian
line broadening of 3.2 kHz has been applied as a final step. Increasing
the local axis disorderσ (mosaic spread) primarily broadens the spectral
line widths. At even greater degrees of mosaic spread, the2H NMR
spectra become similar to a powder-type Pake pattern at larger sample
inclinations,θ ) 60-90°, cf. parts e and f.

Figure 5. Comparison of results obtained using different line shape
treatments: (a) closed-form line shape expression given by eqs 19a-
d; (b) Monte Carlo line shape simulation using eqs 1 and 2 together
with eqs 5 and 6. Results are shown for sample inclinations ofθ ) 0°,
15°, 30°, 45°, 60°, 75°, and 90°, where all spectra are scaled by the
integral. The value of the effective coupling constant has been set to
øQ

eff ) 56.7 kHz, and the bond orientation and the mosaic spread have
been fixed at values ofθB ) 70° andσ ) 7°, respectively. Convolution
with an intrinsic Lorentzian line shape having a width of 3.2 kHz has
been applied as a final step. Note that the two methods yield virtually
identical results; however, the computational time in the former case
is about 60 times longer than for the Monte Carlo simulation. Therefore,
the Monte Carlo approach is computationally more effective, especially
for the case of a nonaxially symmetric EFG tensor and more
complicated internal geometries.
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NMR splitting atθ ) 0° tilt are found to be much sharper than
observed experimentally, and cannot be fitted simultaneously
with the rest of the tilt series. The above means that the
simplified treatment, eq 22, is not suitable for the description
of solid-state2H NMR spectra of uniaxially oriented integral
membrane proteins. It is also interesting that if the subspectra
are added together with an additional factor sinθ′ dθ′, the
quality of the simulation for the 0° tilt 2H NMR spectrum is
improved (not shown). However, the reader is warned that
inclusion of the sine factor to account for the three-dimensional
character of the symmetry axis disorder is inconsistent with the
neglect of integrating over the azimuthal angleφ′ in the
effectively two-dimensional treatment.

Discussion

Solid-state NMR spectroscopy provides a powerful tool for
studying molecular solids and liquid crystals1,6,9,24,25as well as
biological macromolecules and supramolecular assemblies. Rep-
resentative biological applications include both integral mem-
brane proteins and lipid molecules,5,51as well as fibrous proteins,
filamentous bacteriophages, carbohydrates, and nucleic acids.8,19,41

In the case of uniaxially aligned samples having an effectively
static distribution, orientational information including bond ori-
entations and the degree of molecular ordering (mosaic spread)
can be obtained by analyzing the2H NMR line shapes, which
can help to better understand the structural properties of bio-
logical solids and liquid crystalline assemblies.5 The main factors

that influence the accuracy of the various bond angles are the
choice of a model for description of the geometry of the system
of interest, and the type of distribution of the local symmetry
axes (mosaic spread). In the present paper, a general closed-
form expression has been derived for the NMR line shapes of
immobile uniaxially oriented systems as a function of the macro-
scopic sample tilt angle. The line shape function derived in
closed form has been shown to yield identical results with an
alternative numerical Monte Carlo method.16,19 However, for
the case of complicated internal geometries and types of static
disorder, as well as for a nonaxially symmetric electric field
gradient tensor, the latter approach is advantageous, since it
allows one to avoid a substantial increase in computational time
associated with singularities in the closed-form line shape
function.

The2H NMR line shape theory described in the present work
for aligned samples can be applied to integral membrane proteins
and peptides at temperatures where they are essentially im-
mobilized to form an axially symmetric distribution about the
membrane normal. Representative examples include bacterior-
hodopsin16 and possibly rhodopsin, the opioid receptors, and
various G protein-coupled receptors.22 Moreover, as shown by
Nevzorov et al.19 the same method can also be applied in
principle to nucleic acid fibers and their interactions with
proteins. As a specific illustration, the previously published16

experimental tilt series of the2H NMR spectra of macroscopi-
cally oriented purple membranes, containing bacteriorhodopsin
with a specifically2H-labeled methyl group at the 1R position
of the retinal ring, has been simulated in closed form. The results
show that a simplified treatment,20 which corresponds effectively
to a two-dimensional mosaic spread, does not describe simul-
taneously the2H NMR spectra at all tilt angles, nor can a powder
pattern be recovered as a limiting case. By contrast, an excellent
agreement of the simulated spectra with experiment is obtained
in the case of a three-dimensional treatment. Here, the data allow
one to determine the angle between the 1R-[1-C2H3] methyl
group rotor axis of the retinal prosthetic group and the membrane
normal to be 68.8° ( 1.0° (or alternatively its supplementary
value of 180° - 68.8° ) 111.2°; see Moltke et al.16 for a more
detailed discussion of experimental errors). It should be noted
that such precision still lies beyond the reach of one of the most
powerful methods for structure determination, namely X-ray
crystallography.52,53 The information about the various bond
orientations obtained from2H NMR can then be further used
as angular constraints in conjunction with other experimental
techniques as a means of determining the overall orientation of
the retinal with respect to the membrane normal. As a rule, the
2H NMR line shape method described here can be applied to
studies of ligands bound to integral membrane proteins,
membrane-bound peptides, and other uniaxial aligned systems
in relation to their biological mechanisms of action.
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Figure 6. Simulation of experimental2H NMR spectra of bacterio-
rhodopsin in oriented purple membranes at different sample tilt angles
at 20°C, ref 16, showing influence of different treatments of the mosaic
spread. (a) Experimental spectra atθ ) 0°, 45°, and 90° sample
inclinations. (b) Simulation by using eqs 19a-d, corresponding to an
explicit treatment of the three-dimensional uniaxial distribution of the
symmetry axes, with a bond orientation ofθB ) 68.8° and a Gaussian
standard deviation for the mosaic spread ofσ ) 7.2°. (c) Simulation
using the simplified treatment, eq 22, corresponding to an effectively
two-dimensional approximation for the mosaic spread, ref 20, with a
bond orientation ofθB ) 69.5° and a Gaussian standard deviation ofσ
) 7.0°. In both cases a coupling constant oføQ

eff ) 52.4 kHz has been
used, ref 16, and a Lorentzian linebroadening of 3.2 kHz has been
applied together with a correction, ref 54, for the finite pulse length of
3.2 µs. The minor peak in the center of the experimental2H NMR
spectra, part a, most likely arises from the natural abundance of
deuterium in water. Excellent agreement of the theoretical spectra with
experiment is obtained in the case of part b for an explicit three-
dimensional treatment of the mosaic spread. By contrast, the two-
dimensional formulation, part c, yields much sharper peaks at 0° sample
tilt than observed experimentally, and thus is not applicable for
description of the static disorder in purple membranes.
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